GÜNTER KRESZE, DANI SOMMERFELD und RUDOLF ALBRECHT

Reaktionen mit N-Sulfinyl-Verbindungen, I

Umsetzung von N-Sulfinyl-p-toluolsulfonamid mit α-Diketonen

Aus dem Organisch-Chemischen Institut der Technischen Hochschule München (Eingegangen am 20. August 1964)

Aus Benzilderivaten entstehen mit N-Sulfinyl-p-toluolsulfonamid die Mono-p-tosylimide; Diacetyl gibt das tautomere 2-[p-Tosylamino]-buten-(1)-on-(3).

Vor einiger Zeit berichteten wir zusammenfassend über Eigenschaften und Reaktionen von organischen N-Sulfinyl-Verbindungen¹⁾, speziell über die Darstellung und das Verhalten der N-Sulfinyl-sulfonamide. Diese Verbindungen reagieren mit einer Vielzahl von Substanzklassen leicht und glatt unter Addition an die S=N-Bindung. Über die Bildung von N-Arylsulfonyl-iminen bei der Umsetzung mit Aldehyden²⁾ und die Reaktion mit Sulfoxiden zu Sulfiminen³⁾ haben wir kürzlich berichtet. In der folgenden Mitteilungsreihe sollen weitere Reaktionen der N-Sulfinyl-sulfonamide geschildert werden, die primär unter Addition an die S=N-Bindung verlaufen.

Während Benzophenon mit N-Sulfinyl-p-toluolsulfonamid (I) auch in Gegenwart von AlCl₃ nicht reagiert, setzt sich Benzil analog den Benzaldehyden ²⁾ beim Kochen mit I in benzolischer Lösung in Gegenwart von AlCl₃ glatt zu Benzil-mono-[p-tosylimid] (IIIa) um. Eine Weiterreaktion zu Benzil-diimid-Derivaten konnte auch mit überschüssigem I in keinem Fall beobachtet werden.

$$R-CO-CO-R' + OS=N-Ts \rightarrow \begin{pmatrix} COR' \\ R-C-O \\ Ts-N-SO \end{pmatrix} \rightarrow R-C-CO-R' \\ Ts-N + SO_2$$

$$I \qquad III \qquad III$$

$$a: R = R' = C_6H_5 \qquad d: R = R' = (p)H_3C-C_6H_4$$

$$b: R = (p)C1-C_6H_4, R' = C_6H_5 \qquad e: R = R' = CH_3$$

$$c: R = R' = (p)C1-C_6H_4$$

Analog reagieren p-Chlor-, p.p'-Dichlor- und p.p'-Dimethyl-benzil, dagegen tritt keine Reaktion mit p-Methoxy- und p.p'-Dimethoxy-benzil ein: hier werden die Ausgangsprodukte zurückgewonnen.

Allgemein sind die N-Tosyl-benzil-monoimide gegen Hydrolyse beständiger als die von Benzaldehyden abgeleiteten N-Arylsulfonyl-imide, sie werden jedoch glatt durch verd. Salzsäure beim Kochen zum Ausgangsbenzil und Sulfonamid hydrolysiert. Das Derivat des p.p'-Dichlor-benzils (IIIc) ist unter diesen Bedingungen relativ stabil, es

G. Kresze und Mitarbb., Angew. Chem. 74, 135 [1962]; Angew. Chem. internat. Edit. 1, 89 [1962].

²⁾ a) G. Kresze und R. Albrecht, Angew. Chem. 74, 781 [1962]; b) R. Albrecht, G. Kresze und B. Mlakar, Chem. Ber. 97, 483 [1964].

³⁾ G. SCHULZ und G. KRESZE, Angew. Chem. 75, 1022 [1963].

läßt sich auch nicht (im Gegensatz zu dem unsubstituierten Benzilderivat) mit NaBH₄ reduzieren. Durch LiAlH₄ gelingt bei allen N-Sulfonyl-benzil-monoimiden die Reduktion zum Aminoalkohol IV:

III
$$\frac{\text{LiAlH}_{\bullet}}{\text{Ts-NH}} = \begin{array}{ccc} \text{R-CH-CH(OH)-R'} & \xrightarrow{\text{Pb(OAc)}_{\bullet}} & \text{R-CH} \\ & & & \text{Ts-N'} \end{array} + \text{O=CH-R'}$$

$$\text{IV} \qquad \qquad \text{V}$$

Diese Reduktion kann bei der Konstitutionsermittlung des Produktes IIIb aus p-Chlor-benzil und I benutzt werden: Entsprechend einer Angabe von R. CRIEGEE⁴) werden N-Tosyl-aminoalkohole durch Bleitetraacetat unter Bildung von N-Tosyl-iminen gespalten⁵).

Tosylimid IV b ergab neben Benzaldehyd das zu erwartende p-Chlor-benzaldehyd [p-tosylimid] (V, R = (p)Cl-C₆H₄), das zum Vergleich aus p-Chlor-benzaldehyd und I synthetisiert wurde.

Allgemein begünstigen danach Elektronenacceptorgruppen die Umsetzung von Benzilen mit I. Auch bei p-Chlor-benzil reagiert diejenige Carbonylgruppe, aus der stärker Elektronen abgezogen werden. Starke Elektronendonatorgruppen, wie die p-ständige Methoxygruppe, verhindern die Reaktion. Dieser Substituenteneinfluß ist zu erwarten, falls man intermediär eine Vierringcycloaddition zu II annimmt, das sich durch eine SO₂-Abspaltung stabilisiert.

Diacetyl reagiert schon ohne Zugabe von AlCl₃ mit I. Das Produkt ist nach Analyse, IR- (eine $\nu(NH)$ bei 3190/cm; $\nu(CO)$ bei 1695/cm; $\nu(C=C)$ bei 1630/cm) und NMR-Spektren (nur 6 H = 2 Methylgruppen mit δ = 2.2 ppm; ein AB-System für die Vinylidengruppe bei 5.4 und 6.1 ppm) als tautomere Form $H_2C=C-CO-CH_3$ (VI) des Diketon-monoimids IIIe anzusprechen.

Benzoine reagieren nicht mit I.

Der Firma Schering AG, Berlin, und dem Fonds der Chemischen Industrie danken wir für die großzügige Unterstützung dieser Arbeit.

BESCHREIBUNG DER VERSUCHE

Benzil-mono-[p-tosylimid] (IIIa): Zu 11.0 g N-Sulfinyl-p-toluolsulfonamid (I) in 15 ccm absol. Benzol werden 5.5 g trockenes Benzil und eine Spatelspitze AlCl₃ gegeben. Unter Feuchtigkeitsausschluß wird 1.5 Stdn. unter Rückfluß gekocht; jede halbe Stde. wird eine weitere Spatelspitze AlCl₃ dazugegeben. Nach dem Erkalten wird das Benzol i. Vak. abdestilliert, der Rückstand mit 100 ccm Petroläther und 50 ccm CCl₄ ausgezogen und die heiße Lösung schnell filtriert. Beim Abkühlen kristallisieren 8.4 g IIIa (68%) aus, aus Äthanol Schmp. 132°.

C₂₁H₁₇NO₃S (363.4) Ber. C 69.39 H 4.68 N 3.85 Gef. C 69.60 H 4.59 N 3.84

Analog wurden dargestellt:

4.4'-Dichlor-benzil-mono-[p-tosylimid] (IIIc): Schmp. 173.5° (aus Äthanol), Ausb. 65%. C₂₁H₁₅Cl₂NO₃S (432.3) Ber. C 58.34 H 3.44 N 3.21 Gef. C 57.87 H 3.56 N 3.27

⁴⁾ In W. FOERST, Neuere Methoden der präparativen organischen Chemie I, S. 35, Verlag Chemie, Berlin 1944; Dissertat. J. BOLLINGER, Univ. Marburg 1936.

⁵⁾ Diese erste Beschreibung eines N-Sulfonyl-imins hatten wir in 1. c. 2) übersehen.

4.4'-Dimethyl-benzil-mono-[p-tosylimid] (IIId): Schmp. 164.5° (aus Äthanol), Ausb. 75%. C₂₃H₂₁NO₃S (391.6) Ber. C 70.58 H 5.37 N 3.54 Gef. C 70.64 H 5.35 N 4.17

4-Chlor-benzil-mono-[p-tosylimid] (IIIb): Schmp. 167.5° (aus Äthanol), Ausb. 55%.

C₂₁H₁₆ClNO₃S (397.9) Ber. C 63.47 H 4.03 N 3.52 Gef. C 63.34 H 4.23 N 3.38

Reduktion der Benzil-monoimid-Derivate

2-[p-Tosylamino]-1.2-diphenyl-äthanol-(1) (IVa): Zu einer Suspension von 3.6 g Benzilmono-[p-tosylimid] (IIIa) in 15 ccm absol. Äther wird unter ständigem Rühren eine Suspension von 0.22 g NaBH₄ in 25 ccm absol. Äther gegeben, 1 Stde. unter Rückfluß gekocht und nach Abkühlen mit 75 ccm 0.5 n HCl zersetzt. Die abgeschiedenen Kristalle werden abfiltriert und mit wenig Äthanol gewaschen. Schmp. 204° (aus Äthanol), Ausb. 95%.

C₂₁H₂₁NO₃S (367.5) Ber. C 68.56 H 5.72 N 3.81 Gef. C 68.54 H 5.88 N 3.89

2-[p-Tosylamino]-1.2-bis-[p-chlor-phenyl]-\(\alpha\)thanol-(1) (IV c) entsteht analog aus 4.31 g III c und 0.80 g LiAlH₄. Schmp. 242° (aus \(\alpha\)thanol), Ausb. 93%.

C₂₁H₁₉Cl₂NO₃S (436.4) Ber. C 57.79 H 4.39 N 3.19 Gef. C 57.37 H 4.28 N 3.08

2-[p-Tosylamino]-1.2-di-[p-tolyl]-äthanol-(1) (IVd): Analog aus 2.1 g IIId und 0.30 g LiAlH₄. Schmp. 156° (aus Äthanol), Ausb. 95%.

C₂₃H₂₅NO₃S (395.6) Ber. C 69.87 H 6.32 N 3.54 Gef. C 69.76 H 6.34 N 3.56

2-[p-Tosylamino]-2-phenyl-1-[p-chlor-phenyl]-\(\text{athanol-(1)}\) (IVb): Analog aus IIIb. Schmp. 212° (aus \(\text{Athanol}\)), Ausb. 95%.

C₂₁H₂₀ClNO₃S (401.9) Ber. C 62.84 H 4.98 N 3.49 Gef. C 62.92 H 5.19 N 3.48

Oxydative Spaltung von IVb: 1.0 g IVb werden in 100 ccm absol. Benzol suspendiert und 2.5 g Bleitetraacetat zugefügt. Dann wird unter gelegentlichem Umschütteln 8 Stdn. bei 40° gehalten und weitere 12 Stdn. bei Raumtemperatur. Benzol und Eisessig werden völlig abgedampft. Der Rückstand wird 2 mal mit 50 ccm Ligroin $(80-90^\circ)$ ausgekocht, aus dem sich beim Erkalten farblose Kristalle abscheiden, die nach Umkristallisieren aus Ligroin als p-Chlor-benzaldehyd-p-tosylimid (V, $R=(p)Cl-C_6H_4$) (Schmp. 172°) identifiziert wurden. Ausb. 65%.

p-Chlor-benzaldehyd-[p-tosylimid] (V, $R = (p)Cl - C_6H_4$): 1.4 g p-Chlor-benzaldehyd in 20 ccm absol. Benzol, 2.17 g I und eine Spatelspitze $AlCl_3$ werden eine Stde. gekocht. Das Benzol wird abdestilliert und der Rückstand mit 100 ccm Ligroin (80-90°) aufgenommen. Beim Erkalten scheiden sich farblose Kristalle ab, die nach zweimaligem Umkristallisieren aus Ligroin bei 172° (Lit. 2): 173.5-174°) schmelzen. Ausb. 82%.

2-[p-Tosylamino]-buten-(1)-on-(3) (VI): 1.7 g Diacetyl in 20 ccm absol. Benzol und 4.3 g N-Sulfinyl-p-toluolsulfonamid (I) werden 2 Stdn. unter Rückfluß gekocht. Nach Abdestillieren des Benzols i. Vak. wird der gelbe Rückstand mit 50 ccm Petroläther und 45 ccm CCl₄ ausgezogen. Beim Abkühlen der vereinigten Lösungen kristallisiert das Produkt in farblosen Nadeln aus. Schmp. 126-126.5° (aus Äthanol), Ausb. 49%.

C₁₁H₁₃NO₃S (239.3) Ber. C 55.18 H 5.48 N 5.82 Gef. C 55.40 H 5.76 N 5.77